46 research outputs found

    The residual STL volume as a metric to evaluate accuracy and reproducibility of anatomic models for 3D printing: application in the validation of 3D-printable models of maxillofacial bone from reduced radiation dose CT images.

    Get PDF
    BackgroundThe effects of reduced radiation dose CT for the generation of maxillofacial bone STL models for 3D printing is currently unknown. Images of two full-face transplantation patients scanned with non-contrast 320-detector row CT were reconstructed at fractions of the acquisition radiation dose using noise simulation software and both filtered back-projection (FBP) and Adaptive Iterative Dose Reduction 3D (AIDR3D). The maxillofacial bone STL model segmented with thresholding from AIDR3D images at 100 % dose was considered the reference. For all other dose/reconstruction method combinations, a "residual STL volume" was calculated as the topologic subtraction of the STL model derived from that dataset from the reference and correlated to radiation dose.ResultsThe residual volume decreased with increasing radiation dose and was lower for AIDR3D compared to FBP reconstructions at all doses. As a fraction of the reference STL volume, the residual volume decreased from 2.9 % (20 % dose) to 1.4 % (50 % dose) in patient 1, and from 4.1 % to 1.9 %, respectively in patient 2 for AIDR3D reconstructions. For FBP reconstructions it decreased from 3.3 % (20 % dose) to 1.0 % (100 % dose) in patient 1, and from 5.5 % to 1.6 %, respectively in patient 2. Its morphology resembled a thin shell on the osseous surface with average thickness <0.1 mm.ConclusionThe residual volume, a topological difference metric of STL models of tissue depicted in DICOM images supports that reduction of CT dose by up to 80 % of the clinical acquisition in conjunction with iterative reconstruction yields maxillofacial bone models accurate for 3D printing

    Automated axial right ventricle to left ventricle diameter ratio computation in computed tomography pulmonary angiography

    Full text link
    Automated medical image analysis requires methods to localize anatomic structures in the presence of normal interpatient variability, pathology, and the different protocols used to acquire images for different clinical settings. Recent advances have improved object detection in the context of natural images, but they have not been adapted to the 3D context of medical images. In this paper we present a 2.5D object detector designed to locate, without any user interaction, the left and right heart ventricles in Computed Tomography Pulmonary Angiography (CTPA) images. A 2D object detector is trained to find ventricles on axial slices. Those detections are automatically clustered according to their size and position. The cluster with highest score, representing the 3D location of the ventricle, is then selected. The proposed method is validated in 403 CTPA studies obtained in patients with clinically suspected pulmonary embolism. Both ventricles are properly detected in 94.7% of the cases. The proposed method is very generic and can be easily adapted to detect other structures in medical images

    Automated Axial Right Ventricle to Left Ventricle Diameter Ratio Computation in Computed Tomography Pulmonary Angiography

    Get PDF
    Background and Purpose Right Ventricular to Left Ventricular (RV/LV) diameter ratio has been shown to be a prognostic biomarker for patients suffering from acute Pulmonary Embolism (PE). While Computed Tomography Pulmonary Angiography (CTPA) images used to confirm a clinical suspicion of PE do include information of the heart, a numerical RV/LV diameter ratio is not universally reported, likely because of lack in training, inter-reader variability in the measurements, and additional effort by the radiologist. This study designs and validates a completely automated Computer Aided Detection (CAD) system to compute the axial RV/LV diameter ratio from CTPA images so that the RV/LV diameter ratio can be a more objective metric that is consistently reported in patients for whom CTPA diagnoses PE. Materials and Methods The CAD system was designed specifically for RV/LV measurements. The system was tested in 198 consecutive CTPA patients with acute PE. Its accuracy was evaluated using reference standard RV/LV radiologist measurements and its prognostic value was established for 30-day PE-specific mortality and a composite outcome of 30-day PE-specific mortality or the need for intensive therapies. The study was Institutional Review Board (IRB) approved and HIPAA compliant. Results The CAD system analyzed correctly 92.4% (183/198) of CTPA studies. The mean difference between automated and manually computed axial RV/LV ratios was 0.03±0.22. The correlation between the RV/LV diameter ratio obtained by the CAD system and that obtained by the radiologist was high (r=0.81). Compared to the radiologist, the CAD system equally achieved high accuracy for the composite outcome, with areas under the receiver operating characteristic curves of 0.75 vs. 0.78. Similar results were found for 30-days PE-specific mortality, with areas under the curve of 0.72 vs. 0.75. Conclusions An automated CAD system for determining the CT derived RV/LV diameter ratio in patients with acute PE has high accuracy when compared to manual measurements and similar prognostic significance for two clinical outcomes.Madrid-MIT M+Vision Consortiu

    Malignancy and acute pulmonary embolism: risk stratification including the right to left ventricle diameter ratio in 1596 subjects

    No full text
    PURPOSE: To test the hypothesis that subjects with a known malignancy at the time of acute pulmonary embolism (PE) have different clinical characteristics and predictors of 30-day all-cause mortality when compared with subjects with no known malignancy. MATERIALS AND METHODS: A retrospective (August 2003 to March 2010) cohort of 1596 consecutive positive (for acute PE) computed tomography pulmonary angiograms (CTPAs) performed at a single, large, urban teaching hospital was separated into those from subjects with (n=835) and those from subjects without (n=761) a known malignancy. Clinical characteristics were compared between groups, and a logistic regression model determined predictors of 30-day all-cause mortality for each group. RESULTS: Subjects with malignancy were older (60.8+/-13.9 vs. 54.5+/-18.8 y, P1.0) had a higher risk of 30-day death only among subjects with no known malignancy at the time of the CTPA (odds ratio=4.08, 95% confidence interval: 1.67-9.96). CONCLUSIONS: Among subjects who present with acute PE, those with a malignancy had different clinical characteristics and predictors of mortality when compared with the cohort of subjects with no known malignancy. A computed tomography-derived right to left ventricular diameter ratio predicts 30-day all-cause mortality only for those subjects who do not have a malignancy
    corecore